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The Boltzmann description of the preceding paper for tagged particle fluctua- 
tions in a nonequilibrium gas is further analyzed in the limit of small mass ratio 
between the gas and the tagged particles. For a large class of nonequilibrium 
states the Boltzmann-Lorentz collision operator for the tagged particle distribu- 
tion is expanded to leading order in the mass ratio, resulting in a Fokker-Planck 
operator. The drift vector and diffusion tensor are calculated exactly for 
Maxwell molecules. The Fokker-Planck operator depends on the nonequilib- 
rium state only through the hydrodynamic variables for the fluid. The diffusion 
tensor is a measure of the "noise" amplitude and is not simply determined from 
the nonequilibrium temperature; instead, it depends on the fluid stress tensor 
components as well. For the special case of uniform shear flow, the Fokker- 
Planck equation is of the linear type and may be solved exactly. The associated 
set of Langevin equations is also identified and used to describe spatial diffusion 
in the Lagrangian coordinates of the fluid. The effect of viscous heating on 
diffusion is discussed and the dependence of the diffusion coefficient on the 
shear rate is calculated. 

KEY WORDS: Nonequilibrium fluctuations; Fokker-Planck equation; 
Langevin equation; shear flow; kinetic theory; diffusion. 

1. INTRODUCTION 

The equations for transport and fluctuations of a tagged particle in a 
nonequilibrium gas were described in the preceding paper. (l) The kinetic 
equation for the tagged particle is characterized by a Boltzmann-Lorentz 
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collision operator as a functional of the fluid distribution function, and the 
tagged particle was taken to be mechanically identical to the fluid particles. 
This description is extended here to the case of unequal masses for the 
tagged and fluid particles. Specifically, the tagged and fluid particles are 
assumed to interact via the same force law as holds between fluid particles, 
but the mass of the tagged particle, M, is considered to be large compared 
to that of the fluid particle, m. The mass ratio, c -- m/M, is therefore a 
small parameter in terms of which the Boltzmann-Lorentz operator may be 
expanded. This expansion is carried out to leading order, c I/2, resulting in a 
second-order differential operator of the Fokker-Planck form. The drift 
vector and diffusion tensor in this operator are calculated exactly for 
Maxwell molecules. A special feature of the Maxwell potential is that the 
Fokker-Planck operator depends on the nonequilibrium state of the gas 
only through low-order moments of the fluid distribution function, which 
can be identified in terms of the hydrodynamic variables and irreversible 
fluxes of the nonequilibrium gas. In particular, the diffusion tensor is 
proportional to the components of the pressure tensor. This implies that the 
"noise" in the dynamics of the tagged particle is not simply thermal as in 
equilibrium. The Langevin description associated with the Fokker-Planck 
equation is also identified to emphasize this difference between equilibrium 
and nonequilibrium fluctuations. 

In the case of a fluid with uniform shear flow, the Fokker-Planck 
equation is of the "linear" type. The fluctuations and time correlation 
function for position and velocity of the tagged particle are easily deter- 
mined from either the Fokker-Planck equation or the (linear) Langevin 
equations, in the same way as for equilibrium fluctuationsJ 2) The results 
agree with those of Reference 1 obtained directly from the Boltzmann- 
Lorentz equation. An advantage of the Fokker-Planck description is that 
the distribution function and joint probability density for the tagged 
particle may be determined exactly, in contrast to the more general Boltz- 
mann-Lorentz description for which only moments of these functions are 
tractable. Furthermore, since the "linear" Fokker-Planck equation corre- 
sponds to a Gaussian-Markovian process, all multipoint probability densi- 
ties may be expressed in terms of the distribution function and joint 
probability density. This provides an example of a system far from equilib- 
rium for which all statistical properties may be calculated exactly. The 
solutions to both the Fokker-Planck equation and the Langevin equations 
are given in Section 3. The general results are difficult to interpret owing to 
the combined effects of anisotropy induced by the shear field and the 
viscous heating. Consequently attention is focused on the reduced distribu- 
tion function for spatial coordinates of the tagged particle, referred to the 
Lagrangian frame of the fluid. The diffusion coefficient is calculated as a 
function of the shear rate and the nonequilibrium temperature. 
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A limiting form of the Langevin equations derived here has been 
considered by San Miguel and Sancho. (3) Also, a similar discussion of the 
Fokker-Planck equation for a nonequilibrium gas has just been published 
by Fernandez de la Mora and Mercer. (4) The relationship of the present 
work to these others is discussed in the last section. 

2. F O K K E R - P L A N C K  A N D  L A N G E V I N  E Q U A T I O N S  

The kinetic equations for transport and fluctuations of a tagged 
particle in a nonequilibrium gas have the form 

where f is the solution to the nonlinear Boltzmann equation for the gas and 
F denotes either the tagged particle distribution, h, or the joint distribution 
for tagged particle fluctuations in phase space, C [see Eq. (2.1) of Ref. 1 for 
the precise definition]. The operator J[f, .], is the Boltzmann-Lorentz 
operator as a functional of the fluid distribution, f. This operator is 
implicitly a function of the masses of the fluid and tagged particles, and for 
small mass ratio c = m/M << 1, describes the small velocity changes of the 
massive tagged particle due to collisions with the light fluid particles. An 
expansion of J [f, �9 ], to lowest order in E is carried out in Appendix A with 
the result 

J [  f, F]  --> ~81)1 [Ai(r, v,t) + 21 ~ 8  D,y(r, t ) ] F  (2.2) 

The drift vector, A i, and diffusion tensor, D,y, are given by 

, ,( , ' , t)  
A(r,v, t) = v, - - n o  (v - U(r, t)) (2.3) 

D,y(r,t) = 2 0 o ' [ u l p ( r , t ) ~ i y  + (p,  - u2)r  (2.4) 
Here, v 1 and v 2 are constants proportional to ~/2, and n(r,t), p(r,t),  and 
U(r, t) are the local density, pressure, and flow velocity of the fluid. The 
constant n o is the average number density, and 00 = Mno. Also, t,~(r, t) is 
the traceless part of the fluid pressure tensor and represents the irreversible 
part of the momentum flux. A complete description of the tagged particle 
dynamics for small e is therefore provided by the kinetic equation 

~ [Ai(r,v,t)+ 1 8 D~j(r,t)]F (2.5) 

The initial conditions must be specified, together with the state of the fluid. 
An interesting anomaly of the Maxwell potential is that only low-order 
moments of the fluid distribution function occur in the Fokker-Planck 
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limit. As a consequence the drift vector and diffusion tensor depend on 
only the hydrodynamic state of the fluid, and not on some more detailed 
features of the distribution, f.  This simplification does not occur for any 
other force law, except as an approximation. 

For an equilibrium fluid Eq. (2.5) reduces to the usual description of 
tagged particle dynamics. (2) Most of the differences associated with a 
nonequilibrium state are easily understood. The appearance of the flow 
field in the drift vector is simply due to the fact that the collisional damping 
of the tagged particle is due to its velocity relative to the local fluid velocity. 
Similarly, the fluid density occurs because the collision rate is proportional 
to the local number of scatterers surrounding the tagged particle. The first 
term in Eq. (2.4) for the diffusion tensor is also a straightforward general- 
ization of the equilibrium diffusion tensor, D0(~ = (2ulk ~ T/M)Sij, where T 
is the temperature. All of these changes are associated with the replacement 
of the equilibrium distribution for the fluid by a local equilibrium distribu- 
tion. These local equilibrium modifications are at the basis of several 
models for the extension of equilibrium theories of fluctuations to nonequi- 
librium states. (5) In some cases these local equilibrium models can be 
justified as an approximation for states near equilibrium. In other cases 
they are simply not valid. (6) The system considered here is an example of 
the latter, due to the second term in Eq. (2.4), proportional to t/~. This not 
only makes the diffusion tensor anisotropic, but also implies a source of 
fluctuations other than that characterized by a local equilibrium ensemble. 
The relative importance of these contributions is illustrated in Fig, 2 of Ref. 
1. In the non-Newtonian range the deviations from local equilibrium are 
typically 10% with a maximum of 44%. 

The Fokker-Planck Eq. (2.5) applies for an arbitrary nonequilibrium 
state of the fluid. The form of the equation is deceptively simple, however. 
Even if the fluid variables are known functions of r and t, the Fokker-  
Planck operator is generally of the "nonlinear" type, 5 and very little can be 
extracted exactly except in special cases. For example, the average equa- 
tions of motion of the tagged particle are obtained from the position and 
velocity moments of Eq. (2.5), 

0 
57 ( r )  = (v)  

(2.6) 

O__ (v)  = - v, n o ' (  n (r, t)(v - U(r, t)))  
at 

5 The Fokker-Planck operator is clearly a linear differential operator over its domain of 
definition. However, the terminology "linear" and "nonlinear" is often used to distinguish 
the cases in which the equations for the first moments  are linear and nonlinear. More 
precisely, the Fokker-Planck operator is "linear" if the drift vector is linear in the dependent 
variables (excluding time) and the diffusion tensor is constant; otherwise it is "nonlinear. ''(7) 
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These are not closed equations due to the correlation between the velocity 
and position dependence of the fluid variables. This leads to the difficult 
problem of "fluctuation renormalizat ion"S '8) In the limit of small diffusion 
tensor a systematic expansion about the deterministic motion, 

~ t  (v~ = - p,n o 'n((r~, t)((v~ - U(<r>, t)) (2.7) 

may be possible, ~7'8) but otherwise very little is known. O) In the remainder 
of this paper the discussion is limited to a fluid with uniform shear flow, for 
which there are significant simplifications. The conditions of uniform shear 
flow are defined by Eqs. (2.8), (3.2), and (3.3) of Ref. 1. Since the density, 
pressure, and stress tensor are spatially uniform, the Fokker-Planck equa- 
tion reduces to 

( a - ~ + v . V  F=~-~q. ) a [Pa(vi-Ui(r))+ 1 (2.8) 

The diffusion tensor is now independent of r and v: 

k, T(0 
Dij(t ) = 2~ 1 ~ d/j + 2(v I - u2)Poltffj(t) (2.9) 

Also, since the flow field is linear in r, 

U,(r) = a~j 5 (2.10) 

where a o is the shear rate tensor, the Fokker-Planck equation, (2.8), is of 
the linear type. The equations of motion corresponding to (2.6) are now 
closed and linear. Furthermore, Eq. (2.8) defines a Gaussian-Markovian 
process so that all multipoint distribution functions are determined explic- 
itly from the Green's functions for (2.8) (or, equivalently, the two-point 
conditional probability density). The latter is Gaussian in r, v and easily 
determined by standard methods. ~2) Finally, the fluid state in this case is 
specified by the nonequilibrium temperature, T(t), and irreversible stress 
tensor, tff(t). As shown in the appendix of Ref. 1 these may be calculated 
exactly from the nonlinear Boltzmann equation, and therefore all parame- 
ters of the Fokker-Planck operator are specified. 

Associated with the linear Fokker-Planck equation is an equivalent set 
of Langevin equations for the same Gaussian-Markovian process, 6 

ar 
- - V  

at (2.11) 

- U ( r ) )  = v 
at 

6 There is also a set of nonlinear Langevin equations associated with the nonlinear Fokker- 
Planck equation, (2.5). van Kampen's objections to such a relationship do not apply to the 
particular form obtained here (see the conditions on p. 246 of Ref. 7). 



284 Rodriguez el ah 

Here 7 is a stochastic vector representing the fluctuations of r and v about 
their average motion. From the Fokker-Planck equation it follows that 3' is 
Gaussian distributed with the properties 

3 ' i ( t )  = 0 

yi(t)yj(t ') = D~j ( t )d ( t -  t') (2.12) 

vi(t)vj(t '  ) = 0, for t < t' 

The bar over the variables on the left side of Eqs. (2.9) denotes an average 
over the distribution for 3'. Again, the most notable feature of these 
equations for the nonequilibrium fluid is the modification of the noise 
amplitude from 2(v l k~T /  M)60. to Dij(t ). 

3. SOLUTIONS TO FOKKER-PLANCK AND LANGEVIN 
EQUATIONS 

The Langevin equations are a set of coupled linear first-order differen- 
tial equations and therefore straightforward to solve in terms of the stochas- 
tic force, 7. Let z be a six-dimensional vector whose elements are the 
position and the velocity of the tagged particle, 

z ~ ( r , v )  (3.1) 

Then the Langevin equations may be written as 

where the matrices J and F are 

S - - - - [  0 

- v i a  

and the noise spectrum is given by 

V(t) = 

r ( t ) r ( c )  = 

z ( t ) r ( t ' )  = 

with, 

PlI 

0 

_ ~ ( t ) 6 ( t -  t') 

0, for t < t' 

(3.3) 

(3.4) 

\0  I D]  

The abbreviated notation here is such that I, ~, and /)  are the 3 • 3 
matrices whose elements are 60,a~j,D~j, respectively. The solution to the 
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Langevin equations is therefore 

= e- 'Jz(O) + fordS e - J ( ' - s )  F(s) (3.6) z(t) 

The matrix of correlations between positions and velocities, 

G(t,'r) = ( z ( t  + T)z(~)) (3.7) 

is then easily calculated from the properties (3.4). The results agree with 
those from the Boltzmann-Lorentz equation in Ref. 1. In particular the 
source term in the equation for equal time fluctuations [Eq. (4.17) of Ref. 1) 
is the same matrix ~ as defined in Eq. (3.5), so its interpretation there as 
the noise amplitude is confirmed. 

The conditional probability density, or Green's function for the Fok- 
ker-Planck equation, is defined by 

P ( x , t [ x o , t o ) =  ( 6 ( x -  z ( t ) )8(x  o -  z ( t o ) ) ) / ( 8 ( x  o -  z(to))) (3.8) 

The distribution function and joint probability distribution are given in 
terms of P by 

t) = f dxoh(x, t; Xo, to) h(x,  
(3.9) 

h(x,  t; x o, to) = e ( x ,  t l Xo, to)h(xo, to) 

Since P(x,  t ] Xo, to) is Gaussian it is entirely determined by the correlation 
matrix G, Eq. (3.7). Equivalently, a direct solution to the Fokker-Planck 
equation with initial conditions appropriate for (3.8) leads to 

e ( x , t  + ~lXo, . r )_  1 e x p [ -  � 8 9  (3.10) 
(2~)31[M111/2 

with 
Y = x - e - t f x  0 

(3.11) 
M = fordS e -sJ_C(t + "r - s)e-SST 

Also, M -I denotes the inverse of M and I[Mtl its determinant. It is 
straightforward to evaluate the time integral and matrix products in Eq. 
(3.10). However, the general results are quite complex functions of the 
shear rate and not particularly instructive. Instead, the corresponding 
reduced distribution function in coordinate space is considered in more 
detail in the next section. 

4. DIFFUSION IN SHEAR FLOW 

The coordinate space distribution function for a tagged particle in an 
equilibrium fluid obeys a diffusion equation for u 1 t >> 1. To  see the effect of 
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uniform shear flow on this diffusion process it is useful to separate motion 
due primarily to convection of the particle by the fluid from that associated 
with collisions. The convective flow can be eliminated by considering the 
motion relative to the Lagrangian coordinate system of the fluid. For 
example, the solution to the coordinate part of the Langevin equation 

may be written as 

r = ro + fordS v ( s )  

q = foo'dS v'(s) (4.1) 

where q is the Lagrangian coordinate of the system and v' is the relative 
velocity, 

fordS U(r(s)) v' U(r) (4.2) q = r - r  o - , = v -  

T h e n ,  since v' is Gaussian distributed, the conditional probability distribu- 
tion for the Lagrangian coordinate of the tagged particle is 

e(q, tl0,0) (2~)-3fdkeiq'kexp[ ' rt rt = _ - gkikjJ 0 d'rJo ds Rij('c - s ,s)]  (4.3) 

where Rg(t,'r) is the velocity autocorrelation function in the rest frame, 

Rij(t , .  Q = (v : ( t  + ~)vj(.c)) (4.4) 

It is easily verified by direct differentiation that P(q, t[O,O) satisfies the 
exact equation, 

~)p 0 2 
-~ - Lo.(t ) ~ P (4 .5 )  

with Lq(t)  given by 

= rjodS Rij(t - s, s) (4.6) Lo(t)  

The rest frame velocity autocorrelation function, R ~ ( t -  s,s), has been 
calculated in R e f .  1 [Eq.  (5 .17) ]  with the result 

Ro.( t - s, s) = e -'~'( Sik -- aikt)Rkj(O, s) (4.7) 

Equation (4.6) then gives 

Lij (t) + fotds e-"l( t -s)[  8ii c - aik(l -- S) l Rkj(O,s) (4.8) 

This may be rewritten in the suggestive form 

Lij(t) = D ( T ( t ) ) % j ( v l t )  (4.9) 
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where D(T( t ) )  is the diffusion coefficient for a tagged particle in an 
equilibrium field, as a function of the temperature at the time of interest, 

and aoOqt ) is defined by 

= faP'tds e aij(Vlt) 

Here, p(t )  is the pressure. 

k~T( t )  
D ( T ( t ) ) -  Mv I (4.10) 

-s(~ik - -  aikSltq)oRkj(O,t -- S / t ' l ) / p ( t  ) (4.11) 

In Ref. 1 the equal time correlation function, Ro.(O,s ) was shown to be 
simply proportional to the pressure tensor. Such a relationship was valid as 
a consequence of the mass ratio being equal to 1, and consequently does 
not hold here. However, R~j(O,s) is readily calculated from the Langevin 
equations, (2.12), expressed in terms of the relative velocity v'. The calcula- 
tion of %(v, t) for large v~t (the diffusion limit) is outlined in Appendix B, 
with the result 

pit>> llim a O. (t) =-- a~j = A ~ 6 0. + A 2aij -t- A 3aji n t- A 4 a i k  ajk (4.12 ) 

The constants, A i, are scalar functions of the magnitude of the shear rate 
(a~a~j) 1/2 and are also given in Appendix B. The probability density 
therefore obeys the diffusion equation [the Smoluchowski equation asso- 
ciated with Eq. (2.8) in Lagrangian coordinates] 

3P 0 2 
Ot - Li j (T( t ))  ~ P (4.13) 

with the diffusion coefficient given by 

Lij( T(  t) ) = aijD( T( t)) (4.14) 

This equation must be supplemented with the equation for the temperature, 
T(t), which for vlt >> 1 is simply Eq. (A.35) of Ref. 1, 

at(t) 
3t - z l ( a ) T ( t  ) (4.15) 

where zl(a ) is a positive function of the shear rate given by Eq. (A.33) of 
Ref. 1. 

There are essentially two modifications of the diffusion coefficient due 
to shear flow. The first is an anisotropy due to the fluid anisotropy as 
reflected through the pressure tensor and an inertial force on the particle in 
the Lagrangian frame [see Eq. (B.3)]. The second modification is due to 
viscous heating which appears both in the time dependence of the tempera- 
ture and in the shear rate dependence of the coefficients in Eq. (4.12). The 
effect of the heating can be formally suppressed by a nonlinear transforma- 
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tion to a new time variable, 

1- _ 1 (eZ,, _ 1) (4.16) 

In terms of ~- the diffusion equation becomes 

-~TP = Lij(T(O)) 02P (4.17) 
OqiOqj 

The solution to this equation is 

e ( q G I 0 , 0 )  = 1 i(2~,@llgll],/2 exp(-qiqjLi~l/4"r} (4.18) 

Thus, in the Lagrangian space coordinates of the fluid and with respect to a 
time variable adjusted to the heating rate, the diffusion process differs from 
that in equilibrium only by the anisotropy of the diffusion coefficient. The 
effect of the heating depends on both the time of interest and the shear 
rate. Figure 1 illustrates the deviation of 0- from t over the range 0 < t ' l t  ~< 2 
for several values of the shear rate, and e = 0.1. The time dependence of the 
temperature can lead to qualitative changes in the solution to the bilinear 
diffusion equation. For example, the heating here is exponential so that the 
mean square displacement of the tagged particle is linear in 0-, but exponen- 
tial in t. 

The effect of the factor c~,: i on the diffusion coefficient is to decrease it 
relative to its "local equilibrium" value, D(T(t)). This is illustrated in 

2.0 

T 
~.1.5 

1.0 
0 

/ al~ -- 0.3 

1.0 2.0 
vlt - - ->  

Fig. 1. Re la t ionsh ip  be tween the t imes t and  ~- as given by Eq. (4.16) for several  values  of the 
shear rate and  e = 0.1. 
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0 I I 
0 1.0 2 .0  a / ~, 3 .---> 

Fig. 2. Trace of aij(t)/3 from Eqs. (4.12) and (B6) for e =0.1, ( ); same quantity 
neglecting the irreversible part of the stress tensor, tj*, (---); same quantity neglecting viscous 
heating and t,~, ( . . . . .  ). 

Figure 2 where the trace of a,j/3 is plotted as a function of reduced shear 
rate, a/~, 3. Since the shear viscosity of the fluid decreases with shear rate 
(shear thinning) it might be expected from a Stokes-Einstein relation that 
the diffusion coefficient should increase. However, the Stokes-Einstein 
relation would apply only for Brownian particles, whose size is comparable 
to or larger than the mean free path. Here the opposite case has been 
considered, a particle small compared to the mean free path, and the 
friction constant is not related to the shear viscosity as in Stokes law. 

5. D I S C U S S I O N  

The Fokker-Planck and Langevin equations discussed here have been 
obtained directly from the Boltzmann-Lorentz equations for nonequilib- 
rium fluctuations. These results follow from well-understood approxima- 
tions in nonequilibrium statistical mechanics, and therefore serve as a test 
case for phenomenological or stochastic theories of nonequilibrium fluctua- 
tions. The dependence of the diffusion tensor on the irreversible stress 
tensor is an illustration of the need for caution in extending equilibrium 
theories to nonequilibrium states. In general, the diffusion tensor cannot be 
characterized entirely by the thermodynamic temperature. This is some- 
times emphasized by defining a nonequilibrium "noise temperature," or for 
anisotropic systems, a "noise temperature tensor. ''(l~ One such definition is 

Oij(t ) = MDy( t ) /2kBz  q (5.1) 
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In equilibrium, the noise and thermodynamic temperatures are the same. 
For nonequilibrium states it has been conjectured (1~ that the noise temper- 
ature is always greater than or equal to the thermodynamic temperature in 
the sense Oii(t)/3 >1 T(t). This conjecture is valid for the uniform shear flow 
considered here, because the contribution from the irreversible stress tensor 
is traceless. 

The Fokker-Planck equation for a general nonequilibrium state, Eq. 
(2.2), depends on the irreversible momentum flux but not the irreversible 
heat flux. This is an anomaly of the Maxwell potential. For other potential 
models there is an additional contribution to the drift vector that would 
depend on any temperature gradients in the fluid. The mass ratio expansion 
for a general central potential has been discussed recently by Fernandez de 
la Mora and Mercer. (41 Equation (A.14) here agrees with their Eqs. (31) 
and (32) after the indicated Mach number expansion of the latter is carried 
out. The primary differences occur in the application of these results. Here, 
attention is restricted to the Maxwell potential so that states far from 
equilibrium can be discussed; in Ref. 4 the general potential model is 
retained and attention is limited to states near equilibrium (the Chapman-  
Enskog expansion). In particular, attention is focused on the thermal 
diffusion process in Ref. 4 and the contributions for gradients of the 
velocity field are considered to be negligibly small. To clarify this latter 
point the case of uniform shear flow can be specialized to states near 
equilibrium. To first order in the shear rate the solutions to the Boltzmann 
equation for the fluid distribution function, f,  and the Fokker-Planck 
equation for the tagged particle distribution, F, are 

f =  fc {1 - 70.(v)(ao./p3) } (5.2) 

F =  F L {1 - 7/j(v)[ (aij/ul) - 0.an(a/j/p3)]} 

where 7~j(v) is defined by 

-  8ov .2) (5.3) 
and v* is the velocity of the fluid or tagged particle reduced by the 

appropriate thermal velocity. The distributions, fL and FL, are the local 
equilibrium distributions for the fluid and tagged particle, respectively. The 
deviations of the fluid distribution from local equilibrium are characterized 
by the single dimensionless quantity a,7//~3, where ~3 is an eigenvalue of the 
Boltzmann operator [Eq. (A.14) of Ref. 1]. In contrast, there are two 
dimensionless quantities that determine the deviation of the tagged particle 
distribution from local equilibrium, (a~//P3) and (av./Pl). The terms of order 
a~jfp 3 are due to the contributions of the irreversible stress tension to the 
diffusion tensor, whereas the term of order a/u~ is due simply to the 
dependence of the drift vector on the relative velocity. Consequently, when 
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discussing nonequilibrium fluid properties (e.g., the diffusion tensor) terms 
of first order in alp 3 must be retained; however, for tagged particle 
properties the contribution of order alp 3 may be neglected compared to 
a/v  I since pl/~,3~E. More generally, though, both aq/uj and ao/t, 3 terms 
must be considered beyond linear order. 

These comments also indicate the relationship of the results here 
to those of San Miguel and Sancho, (3) who solve the Langevin equa- 
tions (2.17) but  with an equilibrium noise spectrum 7i ( t ) ,o ( t ' )= 
(2ulkBT/M)6~jS(t-t ') .  Thus they neglect the irreversible stress tensor 
contributions and the viscous heating. The above discussion shows that 
such assumptions are correct only to linear order in ao.. In addition, there 
are secular terms of order (ai/p3) 2 due to the viscous heating that eventu- 
ally become important even for small shear rates. 
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APPENDIX A: MASS RATIO EXPANSION OF THE B O L T Z M A N N -  
LORENTZ OPERATOR 

In this Appendix the Boltzmann-Lorentz operator occurring in the 
kinetic equations for the tagged particle distribution and the phase space 
fluctuations is expanded to lowest order in the mass ratio, e =-- m/M,  where 
m is the mass of the fluid particle and M is the mass of the tagged particle. 
It is convenient to perform the expansion in the local rest frame defined by 
transforming all velocities to those relative to the local fluid velocity (see 
Section II of Ref. 1). The operator is then 

(A1) 

where AV 1 and Av are the change in the velocity of the fluid and tagged 
particles, respectively, due to a binary collision. Also, g = v -  v 1 is the 
relative velocity and the prime on the distribution functions, f '  and F' ,  is 
included as a reminder that they are the distributions in the local rest 
frame. The dependence of F '  on position has been left implicit. 

To identify all the dependence on the mass ratio it is necessary to 
express the collision operator in some appropriate dimensionless variables. 
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It will be required that the relevant velocities determined by the distribution 
functions f '  and F '  are characterized by the thermal velocities for the fluid 
and tagged particle, respectively: 

gf = (kBT/m) 1/2, v T = ( k e T / M )  '/2 (A2) 

This characterization precludes strongly nonthermal distributions, such as 
occur in particle beams, but otherwise accommodates a wide class of 
nonequilibrium states. Above, T is some constant temperature of the same 
order as the nonequilibrium temperature, T(t). The characteristic length, o, 
is taken to be that defining the interparticle potential assumed to have the 
form 

V(r) = Vou(r/o ) (A3) 

where V 0 is a constant with dimensions of energy. The dimensionless 
velocities and impact parameter are then defined by 

u  = V/t)r, u = u ' g* = V* -- (e)l/2V~ b* = b/o (a4)  

Also, the dimensionless distribution functions are defined by 

f*(v~) = (ovf)3f'(vO, g*(v*) = v3F'(v) (A5) 

Finally the dimensionless collision operator is given by 

J * [ f * , r * ] = o v 2 j [ f ' , F  '] 

=favTf .b .b . : f .o ( :*( :  + + 

-f*(v~')F*(v*)) (A6) 

In the following the asterisk (*) will be deleted on the integration variables 
for notational simplicity but are understood to be dimensionless unless 
indicated otherwise. At this point it is easily verified that the operator J* is 
a function of only two dimensionless constants, ~ and Vo/kBT -- l /T*.  

The expansion of J* in the small parameter, E, is most easily performed 
by representing J* in terms of its adjoint. Let H(v) be a function that scales 
according to the thermal velocity of the tagged particle, but is otherwise 
arbitrary, and consider the integral, 

f dv H*(v)J*(f*,F*) 

= f a y  dv, db bg aq) H*(v) [ /*(v,  + Av,)r*(v + Av) - f*(v,)F*(v) ] 

(A7) 

A change of variables (v I + AVl,V + Av)---) (v], v) in the first term of the 
brackets leads to (the Jacobian equals 1, from conservation of energy and 
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momentum), 

f dv H*(v)J*(f*, F*) -- f dv dr, db bg dq, f*(v])r*(v)(H*(v + Av) - H*(v)) 

(A8) 

The change in the tagged particle velocity, Av, may be expressed in terms of 
the relative velocity and the scattering angle as 

Eg [ ~ ( c o s O -  1) + ~sin0] (A9) Av-- l + e  

2 oo ax (A10) 
O ( b , g ) = r r -  s x ( x 2 ( 1 - [ 2 ( 1  + )u(xb)lr, g2 l)-1) '/2 

where ~ is a unit vector orthogonal to g and x 0 is the minimum relative 
distance [the root of the radical in Eq. (A10)]. The c dependence occurs 
explicitly as shown in Av and 0, but also implicitly through g. A further 
simplification is possible if the potential function is a homogeneous func- 
tion of x; for example, the r - "  potential gives u(xb)= u(x)b-". The 
dependence of 0 on ~ and g can then be extracted explicitly in Eq. (A8) by 
the change of variablesy = b2(T*~g2/2(1 + e)) 2/", in the b integration, 

-]2/n 
1 (1 + e)2 j g(l-4/n) f dv H*(v)J*(f*,r*) = f dv dv, f*(v,)r*(v) ~ T*e 

x fdyd~[H*(v+Av)-It*(v)] (All) 

The scattering angle O(y) is now independent of all constants and g, 

O(y) = rr - 2~ ~ dx (A12) 
x0 x (x2[1 - y - " / 2 u ( x ) l  - 1)'/2 

and the complete e dependence of Av is contained in the prefactor ge/(1 + 
e). The dominant behavior for small e is therefore c ~/2. With this in mind 
the e expansion can be carried out in two steps: first an expansion in 
powers of Av, followed by an expansion of each term of the first expansion 
in e. The first expansion is known as the Kramers-Moyal expansion (~') and 
is often used to justify the Fokker-Planck equation under the assumption 
that the terms in Av beyond second order are zero or negligible. However, 
the Kramers-Moyal expansion alone is not systematic in any small param- 
eter (for example, it does not order the e expansion ) and its truncation at 
any order does not even preserve the stationary solution for an equilibrium 
fluid. It is only systematic if a subsequent expansion of each term in some 
small parameter is performed to the order considered. Here, the terms of 
order e ~ and e 1/2 are calculated so it is sufficient to retain initially only the 
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first two terms of the Kramers-Moyal expansion, 

fdv H*(v)a* [ f*, F* ] 

with 

(A13) 

to order ~1/2 gives 

<Av,> ~ . ~  dr , f*(vl)VliV~ n -4)/n 

-el/2p~ f dvl f*(vl)v~'-a)/n[ v i + vli(n - 4)v 1 . v/nv~] 

<ADiAj> ~ lie 1/2 [ 2V t fdv i  f*(u 

- 2v~ fdv, f*(u -- �89 )] 

(AIS) 

1[(1+')2] 2/" f (ADi) = ;dv,  f*(u ~ r*,  g(n--4)/n dyd~AD i 
(a14) 

1 [ ( 1 + ~ ) 2 ]  2/~ 
(AviAg)= f dvlf*(vl)5 T*e g("-4)/'f +de~av'a9 

The integration over 0 can be performed using Eq. (A9) and the results, 

s s vr('ij-- gigy/g 2) (A15) 

to give 

(n16) 
= 2v~'( e ](2n-2)/n [~ <av, a 95 ) J avl f*(vOg(n-4)/ngig j 

-- 2v~(_ T--@--7~ ) s  \(2n-2)/n.j av, r f*(vl)g("-4)/"(, gigj-- -51 g23ij /'~ 

The constants v~' and v~' are independent of e and are functions only of the 
reduced temperature, T*, and the power law of the potential, 

2 

(a17) 

vr ~-~-(-~12/"s 

It remains to complete the c expansion of the Kramers-Moyal coefficients 
in Eq. (A16). Use of the definition of g in Eq. (A4) and retaining terms only 
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The integrals over the fluid distribution in Eq. (A18) cannot be 
simplified further in general without specification of the nonequilibrium 
distribution itself. Since the latter is determined from the nonlinear Boltz- 
mann equation, very little progress can be made except for states near 
equilibrium where the Chapman-Enskog solution can be used. An impor- 
tant exception is the case of Maxwell molecules for which the power law is 
n = 4. The results, (A18), then simplify considerably. More importantly the 
integrals over the fluid distribution function reduce to first- or second-order 
velocity moments of the distribution function and may be identified in 
terms of the hydrodynamic variables for the nonequilibrium state. This is 
significant because it means that the effects of the fluid on the tagged 
particle can be characterized completely in terms of the macroscopic state 
of the fluid rather than the experimentally less accessible details of the 
distribution function. In the following, attention will be restricted to a fluid 
of Maxwell molecules. Then, with the definition of the pressure tensor, 
Pi}(r, t), and number density, n(r, t) (in dimensionless form), 

= f a y ,  f * ( v l ) v l i v , j  , n(r, t) = fdv, f*(v 0 (A19) 

the results, (A18), become 

d ' v i >  = - ~ 1/2~t n (r, 0v i  ~- - A t(v,  r, t) 
(A20) 

The term of order ~0 vanishes by definition of the average flow velocity. 
Integrating by parts in Eq. (A13) and use of Eqs. (A20) gives 

0 1 ~vj D/~(r, t)]F*} fdvH*(v){J*[f*,F*]-~v~ [ A * ( v , r , t )  + ~ 

= 0 + (order E) (121) 

Finally then, since H*(v) is arbitrary, the Boltzmann-Lorentz operator to 
order el/2 can be represented as the Fokker-Planck operator, 

j,[f.,F.]__>^O (A.(v,r,t)+ 1 0 D~j(r,t))F* (122) 

The corresponding results in the laboratory frame are obtained by the 
replacement, v ~ v -  U(r, t). Also, returning to the original variables with 
the appropriate units, the desired form of the Fokker-Planck operator is 
obtained: 

0 [Ai(v,r,t)+ 1 0 D~j(r,t)]F (123) 
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The drift vector, A s, and the diffusion tensor, D~j(r, t) are defined by 

Ai(v ,r , t  ) = ~,lnoln(r,t)[ vi - U,.(r,t)] 

Dij(r, t) = 2po l l  v2�89 ekk(r, t)•ij + (v, -- r2)P0.(r, t) l 

with 

(A24) 

(A25) 

Pl = el/2vtnovr a2, v2 = C1/2V~noVT 02, PO = Mno (A26) 

and n o is a constant density of the order of n(r,t) introduced for the 
interpretation of v 1 as a collision rate. The form used in the text, Eqs. 
(2.2)-(2.4), is obtained by dividing the pressure tensor into its diagonal and 
traceless parts, 

P/j(r, t) = p(r, t)8/j + t/~(r, t) (A27) 

where p(r , t)  is the local pressure and the traceless tensor, t,~(r,t) is the 
irreversible part of the pressure tensor (the asterisk here does not indicate a 
dimensionless quantity as above, but is used to conform to the notation of 
Ref. 1). 

The constants v~' and v~' have been evaluated numerically for Maxwell 
molecule with the results 

v~{ = 1.19~r(2/T*) 1/2 

p~ = - ~  1.23(2/T*) 1/2 

APPENDIX B: LONG TIME LIMIT OF %(0 
The factor, ct~j(v 1 t), in the diffusion coefficient is defined by Eq. (4. l l), 

t~lt --s = fo dse p(8ik - aikS/Vl)Rkj(O,t -- s / v O / p ( t  ) ( a l )  a ~ ( P l t )  

The velocity fluctuation Rk)(O, t -- S/Vl) is defined by 

R k j ( O , t -  s l y  0 = ( v ; ( t -  s l P l ) V g ( t -  s / v ) )  (B2) 

To calculate Rrj(0,t - s / v  0 it is convenient to express the Langevin equa- 
tion (2.11) in terms of the relative velocity, 

" t -P l  t)i + a i j v j  = ~[i (B3) 

Then, solving Eq. (B3) and using the properties (2.12) for 7 gives 

R~j(O, t -  s / v  0 = e-2(~'t-2)Ak,(Ul t -- s)Ajm(Vl t - s)Rlm (0,0) 

+ ~(-lfo"'t-Sd.r e-~Ak,~(r  

X Dlm((V,t -- "r -- S)/Vl)  (B4) 

A/j(t) = <3 0. - %t 
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The  exponent ia l  factor  in Eq. (B1) means  that  (vlt  - s)>> 1 if v]t >> 1, for 
the relevant  values of s. Similarly ( v ] t - r - s ) > >  1 for vlt>> 1 in the 
in tegrand of (B4). Consequent ly  D i j ( ( v ] t - s -  r ) /Vl )  m a y  be evaluated 
using the asympto t ic  forms of Eqs. (A35) and  (A36) in Ref. 1, 

e~j( t) = p(O)B~je z'' (B5) 

p(  t) = p(O)Ae z'' 

where A, B~j, and  z I are funct ions of the shear rate and  are given explicitly 
by Eqs. (A37) and  (A38) of Ref. 1. Equat ion  (B1) then becomes,  for 
l a r g e  t ' l t  , 

% . ( t ) ~  a~j = A18ij + Azaij 

with 

2vl(uiu3 + z]v2) 

A1 = (zt + Pl)(Zl + 2ul)(zl  + P3) 

- 2 v l  [ v 3 ( v ] -  v2) 

A2 = (21 + .1)(2; 7~-.1)(z1 + ~') L z -~+-g  

A] 

z 1 + vl 

AI 
A 3 = A 2 + - -  

21 -F Pl 

4t, 1 
A4 = (zl + <)(~1 + 2<)(21 + ~) 

P3(Pl- P2) P3(Pl- P2) 
• (z 1 + 2 v l ) ( z l + v 3 )  + (z 1 + v 3 )  2 + 

+ A3aji + A4ai~ajk (B6) 

or. PIP3 --[- zip 2 ] 
z 1 + 2v 1 J 

(B7) 

(PlP3 q- ZlP2) ] A3 

( z , + 2 v , )  2 ] ( z , + v , )  
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